Pages

Thursday, January 7, 2016

A Comprehensive Overview On The Use Of LED Grow Lights In Crop Production

By Cynthia Hayes


LED stands for Light Emitting Diodes and the ones used for growing plants are a bit different from the regular ones in electronics. For agricultural purposes these diodes are placed more closely and this makes them more powerful thereby making their lighting capabilities a little more powerful. Throughout this guide you will be given all the necessary information concerning the LED grow lights.

The common bulbs produce a vast array of wavelength of light which in turn combine to form the white light we observe. On the other hand the LEDs make it possible for producing single wavelengths. The increase of power is facilitated by combining all the different light emitting diodes and the intensity can be adjusted while making it possible to change the color.

There have been several studies which have been carried out to determine the effect of the light from the sun. It has come to be known that the sun, although beneficial to the plants, it produces some wavelengths which can hinder the development of chlorophyll. This necessitated the need for developing a source which does not pose those effects to plants. This made the diodes a better option.

Some people are hindered from undertaking fruitful agricultural production by the lack of sufficient durations of sun exposure. This scenario calls for innovativeness in ensuring that chlorophyll production continues. Through diodes this scientific breakthrough was arrived at as a viable way of ensuring the plants develop. The reduction in the available arable land has posed a major challenge to many aspiring farmers. It is through the utilization of indoor spaces fitted with LEDs that this challenge has been overcome.

The minute levels of heat emission experience by the use of diodes make it a good fit for agriculture. This allows the diodes to be strategically fixed near the plants so as to help the plants take advantage of proximity of all wavelengths. This helps facilitate plant growth and it is possible only because diodes do not use produce a lot of heat as a result of low energy consumption.

The reduced heat also cools the surrounding environment. This will make the plants transpire less and therefore the overall water consumption by the plants is reduced significantly. Studies have shown that the height of the plants can be easily controlled when using LEDs. This is made possible by the fact that the growth of a plant can be halted once its height reaches a certain distance from the diodes.

With diodes there is no need for a ballast to be incorporated within the system. These ballasts are often placed in other growing technologies with the view of preventing the system from destroying itself. Apart from being bulky, it uses a significant amount of energy to sustain operation. When such a unit is excluded using diodes, the cost of energy can be reduced to sustainable levels.

The adjustment of brightness produced by the diodes is necessary for the effective control of the wavelengths that the plants are subjected to. An interesting discovery linked to this property is that the anti-oxidation elements in plants are greatly fostered. All different brands of agricultural grade LEDs are very different from each other. Several properties are used to classify them and hence determine their suitability. The first factor is cooling abilities, followed by all the level of power consumption. The spectrum provided by a brand is also of great importance.




About the Author:



No comments:

Post a Comment